Review on Progress in Burning Rate Characteristics of Fuels in Pool Fire Scenarios

ZHANG Yanhong, HU Yupeng, MA Yuan, LI Minghai

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (9) : 147-160.

PDF(937 KB)
PDF(937 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (9) : 147-160. DOI: 10.7643/ issn.1672-9242.2025.09.016
Key Projects Equipment

Review on Progress in Burning Rate Characteristics of Fuels in Pool Fire Scenarios

  • ZHANG Yanhong, HU Yupeng, MA Yuan, LI Minghai*
Author information +
History +

Abstract

The work aims to summarize recent research progress on the burning rate of pool fires over recent decades and outline the effect rules of various factors such as fuel type, fuel temperature rise status, and environmental conditions on burning rates. The fundamental dynamics and characteristics of pool fires are elucidated from two perspectives, including the vaporization process dominated by thermal feedback mechanisms, and the heat and mass transfer mechanisms under multi-factor coupling. Finally, the limitations of current research are discussed, and key directions for future work are suggested, providing a theoretical reference for pool fire prevention and combustion prediction.

Key words

pool fire / burning rate / fuel type / temperature rise state / environmental conditions / research progress

Cite this article

Download Citations
ZHANG Yanhong, HU Yupeng, MA Yuan, LI Minghai. Review on Progress in Burning Rate Characteristics of Fuels in Pool Fire Scenarios[J]. Equipment Environmental Engineering. 2025, 22(9): 147-160 https://doi.org/10.7643/ issn.1672-9242.2025.09.016

References

[1] KHAKZAD N, KHAN F, AMYOTTE P, et al.Risk Management of Domino Effects Considering Dynamic Consequence Analysis[J]. Risk Analysis, 2014, 34(6): 1128-1138.
[2] YUAN J, ZHAO J L, WANG W, et al.The Study of Burning Behaviors and Quantitative Risk Assessment for 0\# Diesel Oil Pool Fires[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104568.
[3] 张硕, 浦金云, 姜涛, 等. 基于CFD的开放空间油池火燃烧速率和热辐射研究[J]. 消防科学与技术, 2011, 30(12): 1109-1113.
ZHANG S, PU J Y, JIANG T, et al.CFD Simulation on Burning Rates and Radiation Distribution of Open Pool Fires[J]. Fire Science and Technology, 2011, 30(12): 1109-1113.
[4] 林圣辉. 柴油及柴油混合燃料的火蔓延特性研究[D]. 合肥: 中国科学技术大学, 2018.
LIN S H.Study on Fire Spread Characteristics of Diesel Oil and Diesel Mixed Fuel[D]. Hefei: University of Science and Technology of China, 2018.
[5] HAMINS A, KASHIWAGI T, BUCH R R.Characteristics of Pool Fire Burning[M]. West Conshohocken: ASTM, 1996: 15-41.
[6] BABRAUSKAS V.Estimating Large Pool Fire Burning Rates[J]. Fire Technology, 1983, 19(4): 251-261.
[7] CHATRIS J M, QUINTELA J, FOLCH J, et al.Experimental Study of Burning Rate in Hydrocarbon Pool Fires[J]. Combustion and Flame, 2001, 126(1/2): 1373-1383.
[8] ZUKOSKI E E, CETEGEN B M, KUBOTA T.Visible Structure of Buoyant Diffusion Flames[J]. Symposium (International) on Combustion, 1985, 20(1): 361-366.
[9] MCCAFFREY B J.Purely Buoyant Diffusion Flames: Some Experimental Results[M]. Gaithersburg: US Dept of Commerce, National Institute of Standards and Technology, 1979.
[10] REW P J, HULBERT W G, DEAVES D M.Modelling of Thermal Radiation from External Hydrocarbon Pool Fires[J]. Process Safety and Environmental Protection, 1997, 75(2): 81-89.
[11] STEINHAUS T, WELCH S, CARVEL R, et al.Large- Scale Pool Fires[J]. Thermal Science, 2007, 11(2): 101-118.
[12] MUÑOZ M, PLANAS E, FERRERO F, et al. Predicting the Emissive Power of Hydrocarbon Pool Fires[J]. Journal of Hazardous Materials, 2007, 144(3): 725-729.
[13] DRYSDALE D.An Introduction to Fire Dynamics[M]. New York: John Wiley & Sons Inc, 2011.
[14] KOSEKI H.Large Scale Pool Fires: Results of Recent Experiments[J]. Fire Safety Science, 2000, 6: 115-132.
[15] RAJ V C, PRABHU S V.Measurement of Geometric and Radiative Properties of Heptane Pool Fires[J]. Fire Safety Journal, 2018, 96: 13-26.
[16] 曾娇. 开放空间航空煤油池火燃烧数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2016.
ZENG J.Numerical simulation of Aviation Kerosene Pool Fire Combustion in Open Space[D]. Harbin: Harbin Engineering University, 2016.
[17] 邝辰. 环境风作用下池火燃烧速率、热反馈机制及辐射特性研究[D]. 合肥: 中国科学技术大学, 2019.
KUANG C.Study on Combustion Rate, Thermal Feedback Mechanism and Radiation Characteristics of Pool Fire under Ambient Wind[D]. Hefei: University of Science and Technology of China, 2019.
[18] 杨立中. 工业热安全工程[M]. 合肥: 中国科学技术大学出版社, 2001.
YANG L Z.Industrial Thermal Safety Engineering[M]. Hefei: University of Science and Technology of China Press, 2001.
[19] BLINOV V I, KHUDYAKOV G N.Diffusion Burning of Liquids[C]// Proceedings of the Army Engineer Research and Development Labs Fort Belvoir VA. [s. l.]: PN, 1961.
[20] BURGESS D S, STRASSER A, GRUMER J.Diffusive Burning of Liquid Fuels in Open Trays[J]. Fire Research Abstracts & Reviews, 1961, 3(3): 177.
[21] HAYASAKA H.Unsteady Burning Rates of Small Pool Fires[J]. Fire Safety Science, 1997, 5: 499-510.
[22] HAMINS A, FISCHER S J, KASHIWAGI T, et al.Heat Feedback to the Fuel Surface in Pool Fires[J]. Combustion Science and Technology, 1994, 97(1/2/3): 37-62.
[23] TROUVÉ A.CFD Modeling of Large-Scale Pool Fires[C]// Proceedings of the Second International Energy 2030 Conference, Abu Dhabi: [s. n.], 2008.
[24] BABRAUSKAS V.Estimating Large Pool Fire Burning Rates[J]. Fire Technology, 1983, 19(4): 251-261.
[25] 吴振阔. 丁醇—柴油双燃料清洁燃烧的数值研究[D]. 长沙: 湖南大学, 2014.
WU Z K.Numerical Study on Clean Combustion of Butanol-Diesel Dual Fuel[D]. Changsha: Hunan University, 2014.
[26] 袁银南, 张恬, 梅德清, 等. 直喷式柴油机燃用生物柴油燃烧特性的研究[J]. 内燃机学报, 2007, 25(1): 43-46.
YUAN Y N, ZHANG T, MEI D Q, et al.Investigation on Combustion Characteristics of Direct Injection Diesel Engine Fuelled with Biodiesel[J]. Transactions of CSICE, 2007, 25(1): 43-46.
[27] 成晓北, 陈德良, 鞠洪玲. 柴油机燃用生物柴油的排放特性试验研究[J]. 汽车技术, 2008(1): 46-49.
CHENG X B, CHEN D L, JU H L.Study on Combustion and Emission Characteristics of Diesel Engine Fueled with Blends of Biologic-Diesel[J]. Automobile Technology, 2008(1): 46-49.
[28] PAN K L, CHIU M C.Droplet Combustion of Blended Fuels with Alcohol and Biodiesel/Diesel in Microgravity Condition[J]. Fuel, 2013, 113: 757-765.
[29] NAKAKUKI A.Heat Transfer in Pool Fires at a Certain Small Lip Height[J]. Combustion and Flame, 2002, 131(3): 259-272.
[30] NAKAKUKI A.Liquid Fuel Fires in the Laminar Flame Region[J]. Combustion and Flame, 1974, 23(3): 337-346.
[31] HU L H.A Review of Physics and Correlations of Pool Fire Behaviour in Wind and Future Challenges[J]. Fire Safety Journal, 2017, 91: 41-55.
[32] CHATRIS J M, QUINTELA J, FOLCH J, et al.Experimental Study of Burning Rate in Hydrocarbon Pool Fires[J]. Combustion and Flame, 2001, 126(1/2): 1373-1383.
[33] KOSEKI H, MULHOLLAND G W.The Effect of Diameter on the Burning of Crude Oil Pool Fires[J]. Fire Technology, 1991, 27(1): 54-65.
[34] EMORI R I, SAITO K.A Study of Scaling Laws in Pool and Crib Fires[J]. Combustion Science and Technology, 1983, 31(5/6): 217-231.
[35] KOSEKI H.Combustion Properties of Large Liquid Pool Fires[J]. Fire Technology, 1989, 25(3): 241-255.
[36] MUÑOZ M, ARNALDOS J, CASAL J, et al. Analysis of the Geometric and Radiative Characteristics of Hydrocarbon Pool Fires[J]. Combustion and Flame, 2004, 139(3): 263-277.
[37] ZABETAKIS M G, BURGESS D S.Research on the Hazards Associated with the Production and Handling of Liquid Hydrogen[R]. Washington: U S Dept of the Interior, Bureau of Mines, 1961.
[38] 黎昌海. 船舶封闭空间池火行为实验研究[D]. 合肥: 中国科学技术大学, 2010.
LI C H.Experimental Study on Pool Fire Behavior in Ship Enclosed Space[D]. Hefei: University of Science and Technology of China, 2010.
[39] STROUP D, TAYLOR G, HAUSMAN G. Fire Dynamics Tools (FDTs) Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire protection Inspection Program[R]. Rockville: Nuclear Regulatory Commission, 2013.
[40] BAILEY J L, WILLIAMS F W, TATEM P A.Methanol Pan Fires in an Enclosed Space: Effect of Pressure and Oxygen Concentration[M]. [s. l.]: PN, 1993.
[41] PRETREL H, QUERRE P, FORESTIER M.Experimental Study of Burning Rate Behaviour in Confined and Ventilated Fire Compartments[J]. Fire Safety Science, 2005, 8: 1217-1228.
[42] PRÉTREL H, CHAARAOUI N, LAFDAL B, et al. Effect of Environmental Conditions on Fire Combustion Regimes in Mechanically-Ventilated Compartments[J]. Fire Safety Journal, 2022, 127: 103493.
[43] TATEM, WILLIAMS, NDUBIZU C, et al.Influence of Complete Enclosure on Liquid Pool Fires[J]. Combustion Science and Technology, 1986, 45(3/4): 185-198.
[44] UTISKUL Y, QUINTIERE J G, RANGWALA A S, et al.Compartment Fire Phenomena under Limited Ventilation[J]. Fire Safety Journal, 2005, 40(4): 367-390.
[45] WELKER J R, SLIEPCEVICH C M.Burning Rates and Heat Transfer from Wind-Blown Flames[J]. Fire Technology, 1966, 2(3): 211-218.
[46] TANG F, LI L J, ZHU K J, et al.Experimental Study and Global Correlation on Burning Rates and Flame Tilt Characteristics of Acetone Pool Fires under Cross Air Flow[J]. International Journal of Heat and Mass Transfer, 2015, 87: 369-375.
[47] HU L H, KUANG C, ZHONG X P, et al.An Experimental Study on Burning Rate and Flame Tilt of Optical-Thin Heptane Pool Fires in Cross Flows[J]. Proceedings of the Combustion Institute, 2017, 36(2): 3089-3096.
[48] HU L H, WU L, LIU S.Flame Length Elongation Behavior of Medium Hydrocarbon Pool Fires in Cross Air Flow[J]. Fuel, 2013, 111: 613-620.
[49] 孙荣玉. 水平风作用下池火燃烧特性及羽流特性参数研究[D]. 徐州: 中国矿业大学, 2020.
SUN R Y.Study on Combustion Characteristics and Plume Characteristic Parameters of Pool Fire under Horizontal Wind[D]. Xuzhou: China University of Mining and Technology, 2020.
[50] LEI J, DENG W Y, LIU Z H, et al.Experimental Study on Burning Rates of Large-Scale Hydrocarbon Pool Fires under Controlled Wind Conditions[J]. Fire Safety Journal, 2022, 127: 103517.
[51] WOODS J A R, FLECK B A, KOSTIUK L W. Effects of Transverse Air Flow on Burning Rates of Rectangular Methanol Pool Fires[J]. Combustion and Flame, 2006, 146(1/2): 379-390.
[52] TAO Y, LU K H, CHEN X F, et al.Experimental Investigation on the Temperature Profile of Large Scale RP-5 Aviation Kerosene Pool Fire in an Open Space[J]. Fuel, 2020, 264: 116852.
[53] APTE V, GREEN A, KENT J.Pool Fire Plume Flow in a Large-Scale Wind Tunnel[J]. Fire Safety Science, 1991, 3: 425-434.
[54] APTE V B.Effect of Scale and Fuel Type on the Characteristics of Pool Fires for Fire Fighting Training[J]. Fire Safety Journal, 1998, 31(4): 283-298.
[55] JIANG P, LU S X.Pool Fire Mass Burning Rate and Flame Tilt Angle under Crosswind in Open Space[J]. Procedia Engineering, 2016, 135: 261-274.
[56] SUNDBERG D W, BROWN A L, BLANCHAT T K.Well-Characterized Open Pool Experiment Data and Analysis for Model Validation And Development[R]. Washington: ASTIA, 2006.
[57] LAM C S, WECKMAN E J.Wind-Blown Pool Fire, Part I: Experimental Characterization of the Thermal Field[J]. Fire Safety Journal, 2015, 75: 1-13.
[58] LAM C S, WECKMAN E J.Wind-Blown Pool Fire, Part II: Comparison of Measured Flame Geometry with Semi-Empirical Correlations[J]. Fire Safety Journal, 2015, 78: 130-141.
[59] WALTON W D, EVANS D D, MCGRATTAN K B, et al.Insitu Burning of Oil Spills: Mesoscale Experiments and Analysis[R]. Washington: ASTIA, 1993.
[60] BABRAUSKAS V.Designing Products for Fire Performance: The State of the Art of Test Methods and Fire Models[J]. Fire Safety Journal, 1995, 24(3): 299-312.
[61] 倪佳迪, 李权威, 李森, 等. 狭长空间内通风对航空煤油池火燃烧速率的影响[J]. 安全与环境学报, 2010, 10(6): 155-159.
NI J D, LI Q W, LI S, et al.Effects of Ventilation on the Burning Rate of Aviation Kerosene Pool Fire in Long-Narrow Space[J]. Journal of Safety and Environment, 2010, 10(6): 155-159.
[62] HU L H, LIU S, WU L.Flame Radiation Feedback to Fuel Surface in Medium Ethanol and Heptane Pool Fires with Cross Air Flow[J]. Combustion and Flame, 2013, 160(2): 295-306.
[63] HU L H, HU J J, LIU S, et al.Evolution of Heat Feedback in Medium Pool Fires with Cross Air Flow and Scaling of Mass Burning Flux by a Stagnant Layer Theory Solution[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2511-2518.
[64] TANG F, HU L H, ZHANG X C, et al.Burning Rate and Flame Tilt Characteristics of Radiation-Controlled Rectangular Hydrocarbon Pool Fires with Cross Air Flows in a Reduced Pressure[J]. Fuel, 2015, 139: 18-25.
[65] GREGORY J J, MATA R J, KELTNER N R.Thermal Measurements in a Series of Large Pool Fires[R]. Washington: ASTIA, 1987.
[66] WECKMAN E J, LAM C S, WEISINGER J E, et al.The Effects of Wind on Liquid Fuelled Pool Fires[C]// Heat Transfer: Volume 2. Las Vegas: ASMEDC, 2003.
[67] LEI J, LIU N A, ZHANG L H, et al.Burning Rates of Liquid Fuels in Fire Whirls[J]. Combustion and Flame, 2012, 159(6): 2104-2114.
[68] BLANCHAT T, FIGUEROA V.Large-Scale Open Pool Experimental Data and Analysis for Fire Model Validation and Development[J]. Fire Safety Science, 2008, 9: 105-115.
[69] LI Y T, HUANG H, WANG Z, et al.An Experimental and Modeling Study of Continuous Liquid Fuel Spill Fires on Water[J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 250-257.
[70] ZHAO J L, HUANG H, LI Y T, et al.Experimental and Modeling Study of the Behavior of a Large-Scale Spill Fire on a Water Layer[J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 514-520.
[71] LI Y T, HUANG H, SHUAI J, et al.Experimental Study of Continuously Released Liquid Fuel Spill Fires on Land and Water in a Channel[J]. Journal of Loss Prevention in the Process Industries, 2018, 52: 21-28.
[72] GOTTUK D T, WHITE D A.Liquid Fuel Fires[M]. New York: Springer, 2016: 2552-2590.
[73] LI Y T, HUANG H, ZHANG L H, et al.An Experimental Investigation into the Effect of Substrate Slope on the Continuously Released Liquid Fuel Spill Fires[J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 203-209.
[74] NAKAKUKI A.Heat Transfer in Hot-Zone-Forming Pool Fires[J]. Combustion and Flame, 1997, 109(3): 353-369.
[75] SHI X C, SAHU A K, NAIR S, et al.Effect of Ullage on Burning Behavior of Small-Scale Pool Fires in a Cavity[J]. Proceedings of the Combustion Institute, 2017, 36(2): 3113-3120.
[76] DLUGOGORSKI B Z, WILSON M.Effect of Ullage on Properties of Small-Scale Pool Fires[J]. Developments in Chemical Engineering and Mineral Processing, 2000, 8(1/2): 149-166.
[77] LIU C X, DING L, JANGI M, et al.Experimental Study of the Effect of Ullage Height on Flame Characteristics of Pool Fires[J]. Combustion and Flame, 2020, 216: 245-255.
[78] TAO C F, WANG X S, MA P Y, et al.An Experimental Investigation on Mass Burning Rate of Small Hydrocarbon Pool Fires with Different Lip Heights[J]. Journal of the Chinese Institute of Engineers, 2019, 42(2): 169-174.
[79] ARTEMENKO E S, BLINOV V I.Burning of Liquids in Vessels with Change of Level[J]. Combustion, Explosion and Shock Waves, 1968, 4(1): 39-42.
[80] DLUGOGORCKI B Z, WILSON M T.Effect of Lip Height on Properties of Small Scale Pool Fires[J]. Fire Safety Science, 1995, 2: 129-140.
[81] LI Z H, HE Y P, ZHANG H, et al.Combustion Characteristics of N-Heptane and Wood Crib Fires at Different Altitudes[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2481-2488.
[82] HU X K, HE Y P, LI Z H, et al.Combustion Characteristics of N-Heptane at High Altitudes[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2607-2615.
[83] TU R, FANG J, ZHANG Y M, et al.Effects of Low Air Pressure on Radiation-Controlled Rectangular Ethanol and N-Heptane Pool Fires[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2591-2598.
[84] ZHOU Z H, WEI Y, LI H H, et al.Experimental Analysis of Low Air Pressure Influences on Fire Plumes[J]. International Journal of Heat and Mass Transfer, 2014, 70: 578-585.
[85] LIU J H, HE Y P, ZHOU Z H, et al.Investigation of Enclosure Effect of Pressure Chamber on the Burning Behavior of a Hydrocarbon Fuel[J]. Applied Thermal Engineering, 2016, 101: 202-216.
[86] JUN F, YU C Y, RAN T, et al.The Influence of Low Atmospheric Pressure on Carbon Monoxide of N-Heptane Pool Fires[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 476-483.
[87] FANG J, TU R, GUAN J F, et al.Influence of Low Air Pressure on Combustion Characteristics and Flame Pulsation Frequency of Pool Fires[J]. Fuel, 2011, 90(8): 2760-2766.
[88] YIN J S, YAO W, LIU Q Y, et al.Experimental Study of N-Heptane Pool Fire Behavior in an Altitude Chamber[J]. International Journal of Heat and Mass Transfer, 2013, 62: 543-552.
[89] 涂然. 高原低压低氧对池火燃烧与火焰图像特征的影响机制[D]. 合肥: 中国科学技术大学, 2012.
TU R.Influence Mechanism of Plateau Low Pressure and Hypoxia on Pool Fire Combustion and Flame Image Characteristics[D]. Hefei: University of Science and Technology of China, 2012.
[90] 范玮, 靳乐, 孙亮. 燃料液滴在超临界环境中蒸发和燃烧的研究进展[J]. 南京航空航天大学学报, 2016, 48(3): 291-302.
FAN W, JIN L, SUN L.Review on Investigations of Droplet Evaporation and Combustion of Liquid Fuel in Supercritical Environment[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(3): 291-302.
[91] 张蒙正, 徐胜利. 超临界环境下煤油和UDMH单滴燃烧现象[J]. 火箭推进, 2013, 39(5): 1-6.
ZHANG M Z, XU S L.Combustion Phenomena of Kerosene and UDMH Droplets in Supercritical Environment[J]. Journal of Rocket Propulsion, 2013, 39(5): 1-6.
[92] 张蒙正, 徐胜利. 单滴燃料超临界特性实验研究的新方法[J]. 火箭推进, 2011, 37(1): 7-16.
ZHANG M Z, XU S L.New Method of Experimental Study on Supercritical Characteristic of Single Droplet Fuel[J]. Journal of Rocket Propulsion, 2011, 37(1): 7-16.
[93] FAETH G M, DOMINICIS D P, TULPINSKY J F, et al.Supercritical Bipropellant Droplet Combustion[J]. Symposium (International) on Combustion, 1969, 12(1): 9-18.
[94] MA Z H, LI Y N, LI Z B, et al.Evaporation and Combustion Characteristics of Hydrocarbon Fuel Droplet in Sub- and Super-Critical Environments[J]. Fuel, 2018, 220: 763-768.
[95] 马志豪, 贾义, 李智博, 等. 单滴燃料高压着火与燃烧特性的试验研究[J]. 西安交通大学学报, 2017, 51(5): 95-101.
MA Z H, JIA Y, LI Z B, et al.High Pressure Ignition and Combustion Characteristics of Single Drop Fuel[J]. Journal of Xi’an Jiaotong University, 2017, 51(5): 95-101.
[96] 胡文瑞, 康琦. 微重力科学前沿[J]. 科技导报, 2020, 38(10): 59-62.
HU W R, KANG Q.Frontiers of Microgravity Science[J]. Science & Technology Review, 2020, 38(10): 59-62.
[97] FRIEDMAN R, GOKOGLU S, URBAN D.Microgravity Combustion Research: 1999 Program and Results[R]. Washington: Work of the US Gov Public Use Permitted, 1995.
[98] 赵建福, 王双峰, 刘强, 等. 中国微重力科学研究回顾与展望[J]. 空间科学学报, 2021, 41(1): 34-45.
ZHAO J F, WANG S F, LIU Q, et al.Retrospect and Perspective on Microgravity Science in China[J]. Chinese Journal of Space Science, 2021, 41(1): 34-45.
[99] KUMAGAI S, ISODA H.Combustion of Fuel Droplets in a Falling Chamber[J]. Symposium (International) on Combustion, 1957, 6(1): 726-731.
[100] KUMAGAI S, SAKAI T, OKAJIMA S.Combustion of Free Fuel Droplets in a Freely Falling Chamber[J]. Symposium (International) on Combustion, 1971, 13(1): 779-785.
[101] YANG J C, AVEDISIAN C T.The Combustion of Unsupported Heptane/Hexadecane Mixture Droplets at Low Gravity[J]. Symposium (International) on Combustion, 1989, 22(1): 2037-2044.
[102] CHOI M Y, FREDERICK L D, HAGGARD J B.Observations on a Slow Burning Regime for Hydrocarbon Droplets: N-Heptane/Air Results[J]. Symposium (International) on Combustion, 1991, 23(1): 1597-1604.
[103] JACKSON G, AVEDISIAN C.The Effect of Initial Diameter in Spherically Symmetric Droplet Combustion of Sooting Fuels[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1994, 446(1927): 255-276.
[104] HARA H, KUMAGAI S.The Effect of Initial Diameter on Free Droplet Combustion with Spherical Flame[J]. Symposium (International) on Combustion, 1994, 25(1): 423-430.
[105] NAYAGAM V, HAGGARD J B, COLANTONIO R O, et al.Microgravity N-Heptane Droplet Combustion in Oxygen-Helium Mixtures at Atmospheric Pressure[J]. AIAA Journal, 1998, 36(8): 1369-1378.
[106] XU G W, IKEGAMI M, HONMA S, et al.Inverse Influence of Initial Diameter on Droplet Burning Rate in Cold and Hot Ambiences: A Thermal Action of Flame in Balance with Heat Loss[J]. International Journal of Heat and Mass Transfer, 2003, 46(7): 1155-1169.
[107] MARCHESE A J, DRYER F L, NAYAGAM V.Numerical Modeling of Isolated N-Alkane Droplet Flames: Initial Comparisons with Ground and Space-Based Microgravity Experiments[J]. Combustion and Flame, 1999, 116(3): 432-459.
[108] SATO J, TSUE M, NIWA M, et al.Effects of Natural Convection on High-Pressure Droplet Combustion[J]. Combustion and Flame, 1990, 82(2): 142-150.
[109] VIEILLE B, CHAUVEAU C, CHESNEAU X, et al.High-Pressure Droplet Burning Experiments in Microgravity[J]. Symposium (International) on Combustion, 1996, 26(1): 1259-1265.
[110] CHO S Y, CHOI M Y, DRYER F L.Extinction of a Free Methanol Droplet in Microgravity[J]. Symposium (International) on Combustion, 1991, 23(1): 1611-1617.
[111] MIKAMI M, KATO H, SATO J, et al.Interactive Combustion of Two Droplets in Microgravity[J]. Symposium (International) on Combustion, 1994, 25(1): 431-438.
[112] DIETRICH D L, STRUK P M, KITANO K, et al.Combustion of Interacting Droplet Arrays in a Microgravity Environment[C]// Sixth International Microgravity Combustion Workshop. Cleveland: [s. n.], 2001.
[113] NAGATA H, KUDO I, ITO K, et al.Interactive Combustion of Two-Dimensionally Arranged Quasi-Droplet Clusters under Microgravity[J]. Combustion and Flame, 2002, 129(4): 392-400.
[114] 刘文科, 季洪涛, 吴雪花, 等. 微重力下生物柴油预混醇类燃烧与微爆特性实验研究[J]. 内燃机, 2017, 33(5): 31-36.
LIU W K, JI H T, WU X H, et al.Experimental Study of Combustion and Microexplosion of Biodiesel Alcohol Droplet in Microgravity[J]. Internal Combustion Engines, 2017, 33(5): 31-36.
[115] 刘宇, 孙震, 汤卓, 等. 初始温度对CH4/RP-3航空煤油混合燃料层流燃烧特性的影响[J]. 航空动力学报, 2019, 34(2): 348-356.
LIU Y, SUN Z, TANG Z, et al.Effects of Initial Temperature on the Laminar Combustion Characteristics of CH4/RP-3 Mixed Fuel[J]. Journal of Aerospace Power, 2019, 34(2): 348-356.
[116] 刘国库, 曾文, 郑玮琳. 航空煤油/甲烷混合燃料航空发动机燃烧室燃烧与排放特性分析[J]. 沈阳航空航天大学学报, 2022, 39(4): 10-18.
LIU G K, ZENG W, ZHENG W L.Combustion and Emission Characteristics Analysis of Aero-Engine Combustor Burning Kerosene/Methane[J]. Journal of Shenyang Aerospace University, 2022, 39(4): 10-18.
[117] KUMAR K, SUNG C J, HUI X.Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels[J]. Fuel, 2011, 90(3): 1004-1011.
[118] HUI X, KUMAR K, SUNG C J, et al.Experimental Studies on the Combustion Characteristics of Alternative Jet Fuels[J]. Fuel, 2012, 98: 176-182.
[119] LI B, LIU N, ZHAO R H, et al.Flame Propagation of Mixtures of Air with High Molecular Weight Neat Hydrocarbons and Practical Jet and Diesel Fuels[J]. Proceedings of the Combustion Institute, 2013, 34(1): 727-733.
[120] ZHANG C, HUI X, LIN Y Z, et al.Recent Development in Studies of Alternative Jet Fuel Combustion: Progress, Challenges, and Opportunities[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 120-138.
[121] 马洪安. 国产RP-3航空煤油着火与燃烧特性的实验与数值研究[D]. 大连: 大连理工大学, 2016.
MA H A.Experimental and Numerical Study on Ignition and Combustion Characteristics of Domestic RP-3 Aviation Kerosene[D]. Dalian: Dalian University of Technology, 2016.
[122] CHONG C T, HOCHGREB S.Measurements of Laminar Flame Speeds of Liquid Fuels: Jet-A1, Diesel, Palm Methyl Esters and Blends Using Particle Imaging Velocimetry (PIV)[J]. Proceedings of the Combustion Institute, 2011, 33(1): 979-986.

Funding

; Fund:China Postdoctoral Science Foundation (2024M754239)
PDF(937 KB)

Accesses

Citation

Detail

Sections
Recommended

/